The volume will be:
(a) 24 cm³
(b) 1176 cm³
Given:
Expanding rate,
Let,
- The edge of a cube be "x cm".
(a)
When,
then,
→ [tex]\frac{dx}{dt} = 2 \ cm/sec[/tex]
Let,
- The volume of cube be "V"
→ [tex]V = x^3[/tex]
→ [tex]\frac{dV}{dt} = 3x^2 \frac{dx}{dt}[/tex]
[tex]= 3\times 2^2\times 2[/tex]
[tex]= 3\times 4\times 2[/tex]
[tex]= 24 \ cm^3[/tex]
(b)
When,
then,
→ [tex]\frac{dx}{dt} = 2 \ cm/sec[/tex]
Let,
- The volume of cube be "V"
→ [tex]V = x^3[/tex]
→ [tex]\frac{dV}{dt} = 3x^2 \frac{dx}{dt}[/tex]
[tex]=3\times 14^2\times 2[/tex]
[tex]= 1176 \ cm^3[/tex]
Thus the above answer is correct.
Learn more about cube here:
https://brainly.com/question/11168779