In triangle ABC, the measure of angle B is 18° more than twice the measure of angle A. The measure of angle C is 42° more than that of angle A. Find the angle measures. A: 30°, 78°, 42° B: 30°, 78°, 72° C: 33°, 84°, 63° D: 26°, 70°, 84°

Respuesta :

Answer:

B: 30°, 78°, 72

Step-by-step explanation:

Given a [tex]\triangle ABC[/tex].

Let [tex]\angle A = x^\circ[/tex]

As per question statement, [tex]\angle B[/tex] is 18° more than twice of [tex]\angle A[/tex].

i.e

[tex]\angle B =(2x+18)^\circ[/tex]

[tex]\angle C[/tex] is 42° more than that of [tex]\angle A[/tex]

[tex]\angle C = (x+42)^\circ[/tex]

To find:

The angle measures of the triangle = ?

Solution:

We can use the angle sum property of a triangle here to find the three angles of the triangle.

As per angle sum property, the sum of all the three internal angles is equal to [tex]180^\circ[/tex].

[tex]\angle A + \angle B + \angle C= 180^\circ\\\Rightarrow x+2x+18+x+42=180^\circ\\\Rightarrow 4x+60=180\\\Rightarrow 4x=120\\\Rightarrow x= 30^\circ[/tex]

i.e. [tex]\angle A = 30^\circ[/tex]

[tex]\angle B = 2\times 30 + 18 = 78^\circ[/tex]

[tex]\angle C = 30+42 = 72^\circ[/tex]

Therefore, the correct answer is:

B: 30°, 78°, 72