Respuesta :

Note: Consider the below figure attached with this question.

Given:

[tex]a=3\sqrt{3}[/tex]

To find:

The value of b.

Solution:

In a right angled triangle,

[tex]\tan \theta = \dfrac{Perpendicular}{Base}[/tex]

For the given right angled triangle,

[tex]\tan \theta = \dfrac{a}{b}[/tex]

[tex]\tan (30^\circ) = \dfrac{3\sqrt{3}}{b}[/tex]

[tex]\dfrac{1}{\sqrt{3}} = \dfrac{3\sqrt{3}}{b}[/tex]

On cross multiplication, we get

[tex]1\times b=3\sqrt{3}\times \sqrt{3}[/tex]

[tex]b=3(3)[/tex]

[tex]b=9[/tex]

Therefore, the value of b is 9.

Ver imagen erinna