Respuesta :

Answer: f(x)= -2x+1

Step-by-step explanation:

The expression for f(x), when we rewrite [tex]\frac{64^x}{4^{5x-1}}[/tex] as [tex]4^{f(x)}[/tex] will be [tex]4^{-2x+1}[/tex].

What is expression ?

Expression is a finite combination of symbols that is well-formed according to rules that depend on the context.

We have,

[tex]\frac{64^x}{4^{5x-1}}[/tex]

So,

Now, to rewrite in form of [tex]4^{f(x)}[/tex],

So,

Rewrite the given expression in the form of 4,

i.e.

[tex]\frac{64^x}{4^{5x-1}}[/tex]

[tex]=\frac{(4^3)^x}{4^{5x-1}}[/tex]

[tex]=\frac{(4^3x)}{4^{5x-1}}[/tex]

NOw,

Using Exponent rule,

We get,

[tex]=4^{3x-(5x-1)}=4^{3x-5x+1}[/tex]

On solving we get,

[tex]=4^{-2x+1}[/tex]

So,

[tex]4^{f(x)}=4^{-2x+1}[/tex]

Hence, we can say that the expression for f(x), when we rewrite [tex]\frac{64^x}{4^{5x-1}}[/tex] as [tex]4^{f(x)}[/tex] will be [tex]4^{-2x+1}[/tex].

To know more about expression click here

https://brainly.com/question/953809

#SPJ2