Answer:
x = [tex]-\frac{133}{3}[/tex], y = [tex]\frac{157}{15}[/tex]
Step-by-step explanation:
x + 5y = 8
3x = 24 - 157
3x = 24 - 157
3x = -133
x = [tex]-\frac{133}{3}[/tex]
x + 5y = 8
[tex]-\frac{133}{3}[/tex] + 5y = 8
5y = [tex]\frac{157}{3}[/tex]
y = [tex]\frac{157}{15}[/tex]