Respuesta :
Answer:
x+2y=13
Step 1: Add -2y to both sides.
x+2y+−2y=13+−2y
x=−2y+13
Answer:
x=−2y+13
Step 1: Add 5y to both sides.
3x−5y+5y=6+5y
3x=5y+6
Step 2: Divide both sides by 3.
3x
3
=
5y+6
3
x=
5
3
y+2
Answer:
x=
5
3
y+2
Step 1: Add -3x to both sides.
3x−5y+−3x=6+−3x
−5y=−3x+6
Step 2: Divide both sides by -5.
−5y
−5
=
−3x+6
−5
y=
3
5
x+
−6
5
Answer:
y=
3
5
x+
−6
5
Step-by-step explanation:
Answer:
(7, 3)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
Algebra I
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
Step 1: Define Systems
x + 2y = 13
3x - 5y = 6
Step 2: Rewrite Systems
x + 2y = 13
- Subtract 2y on both sides: x = 13 - 2y
Step 3: Redefine Systems
x = 13 - 2y
3x - 5y = 6
Step 4: Solve for y
Substitution
- Substitute in x: 3(13 - 2y) - 5y = 6
- Distribute 3: 39 - 6y - 5y = 6
- Combine like terms: 39 - 11y = 6
- Isolate y term: -11y = -33
- Isolate y: y = 3
Step 5: Solve for x
- Define equation: x + 2y = 13
- Substitute in y: x + 2(3) = 13
- Multiply: x + 6 = 13
- Isolate x: x = 7