Respuesta :

Answer:

x+2y=13

Step 1: Add -2y to both sides.

x+2y+−2y=13+−2y

x=−2y+13

Answer:

x=−2y+13

Step 1: Add 5y to both sides.

3x−5y+5y=6+5y

3x=5y+6

Step 2: Divide both sides by 3.

3x

3

=

5y+6

3

x=

5

3

y+2

Answer:

x=

5

3

y+2

Step 1: Add -3x to both sides.

3x−5y+−3x=6+−3x

−5y=−3x+6

Step 2: Divide both sides by -5.

−5y

−5

=

−3x+6

−5

y=

3

5

x+

−6

5

Answer:

y=

3

5

x+

−6

5

Step-by-step explanation:

Space

Answer:

(7, 3)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Algebra I

  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

Step 1: Define Systems

x + 2y = 13

3x - 5y = 6

Step 2: Rewrite Systems

x + 2y = 13

  1. Subtract 2y on both sides:                    x = 13 - 2y

Step 3: Redefine Systems

x = 13 - 2y

3x - 5y = 6

Step 4: Solve for y

Substitution

  1. Substitute in x:                    3(13 - 2y) - 5y = 6
  2. Distribute 3:                         39 - 6y - 5y = 6
  3. Combine like terms:           39 - 11y = 6
  4. Isolate y term:                     -11y = -33
  5. Isolate y:                              y = 3

Step 5: Solve for x

  1. Define equation:                    x + 2y = 13
  2. Substitute in y:                       x + 2(3) = 13
  3. Multiply:                                  x + 6 = 13
  4. Isolate x:                                 x = 7