Use a matrix to solve the system:

Answer:
(2.83 , 1 , 4)
Step-by-step explanation:
[tex]2x+2y-z=4\\4x-2y-2z=2\\3x+3y-4z=-4\\[/tex]
Rewrite these equations in matrix form
[tex]\left[\begin{array}{ccc}2&2&-1\\4&-2&-2\\3&3&-4\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}4\\2\\-4\end{array}\right] \\[/tex]
we can write it like this,
[tex]AX=B\\X=A^{-1}B[/tex]
so to solve it we need to take the inverse of the 3 x 3 matrix A then multiply it by B.
We get the inverse of matrix A,
[tex]A^{-1}=\left[\begin{array}{ccc}7/15&1/6&-1/5\\1/3&-1/6&0\\3/5&0&-2/5\end{array}\right] \\[/tex]
now multiply the matrix with B
[tex]X=A^{-1}B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}7/15&1/6&-1/5\\1/3&-1/6&0\\3/5&0&-2/5\end{array}\right]\left[\begin{array}{ccc}4\\2\\-4\end{array}\right] \\\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}2.83\\1\\4\end{array}\right] \\[/tex]