Solution :
Here, [tex]$ \hat p$[/tex] = sample proportion of red outcomes
[tex]$ \hat p =\frac{58}{100}$[/tex]
[tex]$ \hat p$[/tex] = 0.58
So we have to test,
[tex]$H_0 : p = 0.5$[/tex]
V/S [tex]$H_a: p \neq 0.5 $[/tex]
The test statistic is
[tex]$z = \frac{\hat p - p}{\sqrt{\frac{p(1-p)}{n}}}$[/tex]
[tex]$z = \frac{0.58 - 0.5}{\sqrt{\frac{0.5(1-0.5)}{100}}}$[/tex]
[tex]$=\frac{0.08}{0.05}$[/tex]
= 1.600
P value using the z table is 0.110
So P value greater than 0.05
Therefore, there is no evidence that roulette wheel is out of balance.