What is the molar solubility of nickel(II) sulfide in 0.091 M KCN? For NiS, Ksp = 3.0 × 10 –19; for Ni(CN) 4 2–, Kf = 1.0 × 10 31.

Respuesta :

Answer:

The value is  [tex]x = 0.0227 \ M[/tex]

Explanation:

From the question we are told that

     The concentration of [tex]KCN \ \ i.e \ \ CN^{-}[/tex] is  [tex]M_1 = 0.091 \ M[/tex]

     The solubility product constant for [tex]NiS[/tex] is  [tex]K_{sp} = 3.0 *10^{-19}[/tex]

     The stability  constant for [tex]Ni(CN)_4 ^{2-}[/tex] is  [tex]K_f = 1.0 *10^{31}[/tex]

Generally the dissociation  reaction for NiS is  

       [tex]Ni S \underset{}{\stackrel{}{\rightleftharpoons}} Ni^{2+} + S^{2-}[/tex]

Generally the formation reaction for [tex]Ni(CN)_4 ^{2-}[/tex]   is  

      [tex]4CN^- + N_i ^{2+} \underset{}{\stackrel{}{\rightleftharpoons}} \ Ni(CN)^{2-}_{4}[/tex]

Combining both reaction we have

      [tex]4CN^ - + NiS \ \underset{}{\stackrel{}{\rightleftharpoons}} \ Ni(CN)^{2-}_4 + S^{2-}[/tex]

Gnerally the equilibrium constant for this reaction is  

         [tex]K_c = K_{sp} * K_f[/tex]

=>       [tex]K_c = 3.0 *10^{-19 } * 1.0 *10^{31}[/tex]  

=>       [tex]K_c = 3.0*10^{12}[/tex]

Generally the I C E  table for the above reaction is  

                     [tex]4CN^ - \ \ \ + \ \ \ NiS \ \ \ \ \ \ \ \underset{}{\stackrel{}{\rightleftharpoons}} \ \ \ \ \ Ni(CN)^{2-}_4 \ \ \ \ \ \ \ \ \ + \ \ \ \ \ \ \ \ \ S^{2-}[/tex]

initial [ I]        0.091                                              0                                    0

Change [C]        -4x                                                 +x                                    + x

Equilibrium [E ]   0.091 - 4x                                      x                                        x

Here is  x is the amount in term of concentration that is lost by [tex]CN^-[/tex]  and gained by   [tex]Ni(CN)_4 ^{2-}[/tex]  and  [tex]S^{2-}[/tex]

Gnerally the equilibrium constant for this reaction is mathematically represented as

              [tex]K_c = \frac{[Ni (CN)_4^{2-} ] [S^{2-} ] }{ [CN^{-}]^4}[/tex]

=>             [tex]3.0*10^{12} = \frac{x * x}{ [0.091 - 4x ]^4}[/tex]

=>              [tex]3.0*10^{12}* [0.091 - 4x ]^4 = x^2[/tex]

=>              [tex][0.091 - 4x ]^4 = \frac{x^2}{3.0*10^{12}}[/tex]

=>              [tex][0.091 - 4x ] = \sqrt[4]{ \frac{x^2}{3.0*10^{12}}}[/tex]

=>              [tex][0.091 - 4x ] = \frac{\sqrt{x} }{1316}[/tex]

=>              [tex]119.8 - 5264x =\sqrt{x}[/tex]

Square both sides

                 [tex](119.8 - 5264x)^2 =x[/tex]

=>               [tex]14352.04 - 1261255 x + 27709696x^2 = 0[/tex]

=>                [tex]27709696x^2 - 1261255 x + 14352.04 = 0[/tex]

Solving using quadratic equation

   The value of x  is  [tex]x = 0.0227 \ M[/tex]

Hence the amount in terms of  molarity (concentration) of  [tex]Ni(CN)_4 ^{2-}[/tex]  and  [tex]S^{2-}[/tex] produced at equilibrium is [tex]x = 0.0227 \ M[/tex] it then means that the amount of  NiS (nickel(II) sulfide) lost at equilibrium is  [tex]x = 0.0227 \ M[/tex]

So the molar solubility of nickel(II) sulfide at equilibrium is  

        [tex]x = 0.0227 \ M[/tex]