Respuesta :
Recall that
cos²(x) + sin²(x) = 1
for all x, so that
sin(x) = ± √(1 - cos²(x))
Given that cos(θ) = 4/9 > 0, and
tan(θ) = sin(θ) / cos(θ) < 0
it follows that sin(θ) < 0, so
sin(θ) = - √(1 - cos²(θ)) = - √(1 - (4/9)²) = - √(65)/9
Recall that
cos²(x) + sin²(x) = 1
for all x, so that
sin(x) = ± √(1 - cos²(x))
Given that cos(θ) = 4/9 > 0, and
tan(θ) = sin(θ) / cos(θ) < 0
it follows that sin(θ) < 0, so
sin(θ) = - √(1 - cos²(θ)) = - √(1 - (4/9)²) = - √(65)/9