Find an equation of the perpendicular bisector of the line segment whose endpoints are given.
(0,1) and (-10,5)
The equation is
andard form)

Find an equation of the perpendicular bisector of the line segment whose endpoints are given 01 and 105 The equation is andard form class=

Respuesta :

Answer:

The equation of the perpendicular bisector line

5 x - 2 y + 31 =0

Step-by-step explanation:

Explanation:-

Given points are ( 0,1) and (-10,5)

The Midpoint of given two points

             [tex](\frac{x_{1}+x_{2} }{2} , \frac{y_{1}+y_{2} }{2} )[/tex]

             (-5 , 3)

The Slope of the line

 m =        [tex]\frac{y_{2} -y_{1} }{x_{2}-x_{1} } = \frac{5-1}{-10} = \frac{-2}{5}[/tex]

The perpendicular slope

    =   [tex]\frac{-1}{m} = \frac{-1}{\frac{-2}{5} } = \frac{5}{2}[/tex]

The equation of the perpendicular bisector line

 [tex]y - y_{1} = m (x - x_{1} )[/tex]

 [tex]y - 3 = \frac{5}{2} ( x-(-5))[/tex]

  2 y - 6 = 5( x +5)

    5 x + 25 -2y +6 =0

   5 x - 2 y + 31 =0

Otras preguntas