Combine like terms to simplify the expression: {\dfrac{2}{5}k-\dfrac35+\dfrac{1}{10}k} 5 2 ​ k− 5 3 ​ + 10 1 ​ kstart fraction, 2, divided by, 5, end fraction, k, minus, start fraction, 3, divided by, 5, end fraction, plus, start fraction, 1, divided by, 10, end fraction, k

Respuesta :

Given:

The expression is

[tex]{\dfrac{2}{5}k-\dfrac35+\dfrac{1}{10}k}[/tex]

To find:

The simplified form of given expression.

Solution:

We have,

[tex]{\dfrac{2}{5}k-\dfrac35+\dfrac{1}{10}k}[/tex]

On combining like terms, we get

[tex]=\left(\dfrac{2}{5}k+\dfrac{1}{10}k\right)-\dfrac{3}{5}[/tex]

Taking LCM in the parenthesis, we get

[tex]=\left(\dfrac{4k+k}{10}\right)-\dfrac{3}{5}[/tex]

[tex]=\left(\dfrac{5k}{10}\right)-\dfrac{3}{5}[/tex]

[tex]=\dfrac{k}{2}-\dfrac{3}{5}[/tex]

Therefore, the simplified form of the given expression is [tex]\dfrac{k}{2}-\dfrac{3}{5}[/tex].

Answer:

k/2-3/5

Step-by-step explanation: Khan