Answer:
The cost of an order of large fries is [tex]\$ 2.10[/tex] and the cost of a hamburger is [tex]\$3.25[/tex].
Step-by-step explanation:
Let the cost of an order of large fries be [tex]\$ x[/tex].
Then, the cost of a hamburger is [tex]\$ x+\$1.15[/tex].
Bill bought two hamburgers and an order of large fries for a total of [tex]\$ 8.60[/tex].
So, [tex]2(x+1.15)+x=8.60[/tex]
[tex]\Rightarrow 2x+2.30+x=8.60[/tex]
[tex]\Rightarrow 3x=8.60-2.30[/tex]
[tex]\Rightarrow 3x=6.30[/tex]
[tex]\Rightarrow x=\frac{6.30}{3}[/tex]
[tex]\Rightarrow x=2.10[/tex]
So, the cost of an order of large fries is [tex]\$ 2.10[/tex].
And, the cost of a hamburger is [tex]\$2.10+\$1.15=\$3.25[/tex].
Hence, the cost of an order of large fries is [tex]\$ 2.10[/tex] and the cost of a hamburger is [tex]\$3.25[/tex].