Respuesta :

Answer:

[tex]b=192.5[/tex]

Step-by-step explanation:

We can set up the following proportion:

[tex]\frac{20}{35}=\frac{110}{b}[/tex].

Cross-multiply to solve for [tex]b[/tex]:

[tex]20b=110\cdot 35,\\b=\frac{110\cdot35}{20}=\fbox{$192.5$}[/tex].

Hey there!

[tex]\bold{\dfrac{20}{35}=\dfrac{110}{b}}[/tex]

Cross multiply

[tex]\bullet \ \bold{numerator \times denominator }\\ \\ \bullet \ \bold{denominator \times numerator}[/tex]

[tex]\bold{20\times b = 110 \times 35}\\ \\ \bold{20\times b=20b}\\ \\ \bold{110\times35=3,850}\\ \\ \underline{\bold{New\ equation: 20b = 3,850}}[/tex]

DIVIDE [tex]\bold{20}[/tex] on BOTH SIDES

[tex]\bold{\dfrac{20b}{20}=\dfrac{3,850}{20}}[/tex]

CANCEL out:   [tex]\bold{\dfrac{20}{20}}[/tex] because that gives you [tex]\bold{1}[/tex]

KEEP: [tex]\bold{\dfrac{3,850}{20}}[/tex] because it helps us solve for [tex]\bold{b}[/tex]

[tex]\bold{b = \dfrac{3,850}{20}=\dfrac{3,850\div10}{20\div10}=\dfrac{385}{2}}[/tex]

[tex]\boxed{\boxed{\huge{\bf{Answer: b = \dfrac{385}{2}}}}}\checkmark[/tex]

Good luck on your assignment and enjoy your day!

~[tex]\frak{LoveYourselfFirst:)}[/tex]