Respuesta :

Answer:

The x-coordinate of the intersection point (x, y) = (-0.5, -1) of the system is: -0.5

Hence, option A) i.e. -0.5 is correct.

Step-by-step explanation:

Given the system of equations

2.4x - 1.5y = 0.3

1.6x + 0.5y = -1.3

solving the system of equations

[tex]\begin{bmatrix}2.4x-1.5y=0.3\\ 1.6x+0.5y=-1.3\end{bmatrix}[/tex]

Multiply 2.4x - 1.5y = 0.3 by 2

Multiply 1.6x + 0.5y = -1.3 by 3

so the system of equations becomes

[tex]\begin{bmatrix}4.8x-3y=0.6\\ 4.8x+1.5y=-3.9\end{bmatrix}[/tex]

so

[tex]4.8x+1.5y=-3.9[/tex]

[tex]-[/tex]

[tex]\underline{4.8x-3y=0.6}[/tex]

[tex]4.5y=-4.5[/tex]

so the system of equations becomes

[tex]\begin{bmatrix}4.8x-3y=0.6\\ 4.5y=-4.5\end{bmatrix}[/tex]

solve 4.5y = -4.5 for y

[tex]4.5y=-4.5[/tex]

Multiply both sides by 10

[tex]4.5y\cdot \:10=-4.5\cdot \:10[/tex]

Refine

[tex]45y=-45[/tex]

Divide both sides by 45

[tex]\frac{45y}{45}=\frac{-45}{45}[/tex]

Simplify

[tex]y=-1[/tex]

For 4.8x - 3y = 0.6, plug in y = -1

[tex]4.8x-3\left(-1\right)=0.6[/tex]

[tex]4.8x+3\cdot \:1=0.6[/tex]

[tex]4.8x+3=0.6[/tex]

Multiply both sides by 10

[tex]4.8x\cdot \:10+3\cdot \:10=0.6\cdot \:10[/tex]

Refine

[tex]48x+30=6[/tex]

Subtract 30 from both sides

[tex]48x+30-30=6-30[/tex]

Simplify

[tex]48x=-24[/tex]

Divide both sides by 48

[tex]\frac{48x}{48}=\frac{-24}{48}[/tex]

simplify

[tex]x=-\frac{1}{2}[/tex]

or

[tex]x = -0.5[/tex]

Thus,

(x, y) = (-0.5, -1)

Therefore, the x-coordinate of the intersection point (x, y) = (-0.5, -1) of the system is: -0.5

Hence, option A) i.e. -0.5 is correct.