Find the edge length of the cube. (The density of copper is 8.96 g/cm3, and the volume of a cube is equal to the edge length cubed.)

Express your answer with the appropriate units.

Respuesta :

Answer:

[tex]x = 2.13\ cm[/tex]

Explanation:

See comment for complete question

Given

[tex]Mass = 87.2g[/tex]

[tex]Density = 8.96gcm^{-3[/tex]

Required

Calculate the edge length of the cube

First, we need to calculate the volume of the cube using:

[tex]Density = \frac{Mass}{Volume}[/tex]

Make Volume the subject:

[tex]Volume= \frac{Mass}{Density }[/tex]

Substitute values for Mass and Density

[tex]Volume= \frac{87.2g}{8.96gcm^{-3}}[/tex]

[tex]Volume= \frac{87.2cm^3}{8.96}[/tex]

[tex]Volume= 9.73cm^3[/tex]

Represent the edge length with x.

So:

[tex]Volume = x^3[/tex]

Substitute x^3 for Volume in [tex]Volume= 9.73cm^3[/tex]

[tex]x^3 = 9.73cm^3[/tex]

Take cube root of both sides

[tex]x = \sqrt[3]{9.73cm^3}[/tex]

[tex]x = 2.13\ cm[/tex] --- approximated

Hence, the edge length is 2.13cm