Answer:
[tex]x = 2.13\ cm[/tex]
Explanation:
See comment for complete question
Given
[tex]Mass = 87.2g[/tex]
[tex]Density = 8.96gcm^{-3[/tex]
Required
Calculate the edge length of the cube
First, we need to calculate the volume of the cube using:
[tex]Density = \frac{Mass}{Volume}[/tex]
Make Volume the subject:
[tex]Volume= \frac{Mass}{Density }[/tex]
Substitute values for Mass and Density
[tex]Volume= \frac{87.2g}{8.96gcm^{-3}}[/tex]
[tex]Volume= \frac{87.2cm^3}{8.96}[/tex]
[tex]Volume= 9.73cm^3[/tex]
Represent the edge length with x.
So:
[tex]Volume = x^3[/tex]
Substitute x^3 for Volume in [tex]Volume= 9.73cm^3[/tex]
[tex]x^3 = 9.73cm^3[/tex]
Take cube root of both sides
[tex]x = \sqrt[3]{9.73cm^3}[/tex]
[tex]x = 2.13\ cm[/tex] --- approximated
Hence, the edge length is 2.13cm