Answer:
P-value = 0.0046
Step-by-step explanation:
Given that:
Sample size n = 290
sample mean [tex]\overline{x_1}[/tex] = 4.1
standard deviation [tex]\sigma[/tex] = 0.6
population mean [tex]\mu[/tex] = 4.2
The null and the alternative hypothesis
[tex]\mathbf{H_o: \mu = 4.2} \\ \\ \mathbf{H_a: \mu \ne 4.2}[/tex]
This is a two-tailed test.
The test statistics can be computed as:
[tex]Z = \dfrac{\overline x - \mu }{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = \dfrac{4.1 - 4.2 }{\dfrac{0.6}{\sqrt{290}}}[/tex]
[tex]Z = \dfrac{-0.1 }{\dfrac{0.6}{\sqrt{290}}}[/tex]
Z = -2.838
P-value = P(Z> 2.838)
P-value = P(Z< -2.838) +P(Z > 2.838)
P-value = 0.00227 + (1 - 0.9977)
P-value = 0.00457
P-value = 0.0046 (to 4 decimal places)