Quadrilateral JKLM has vertices at J(0,0), K(0,6), L(9,12), and M(12,0). Find the vertices of the quadrilateral after a dilation with scale factor 2/3.


Answer choices

J'(0, 0), K'(0, 9), L'(27/2, 18), and M'(18, 0)

J'(0, 0), K'(0, 4), L'(6, 8), and M'(8, 0)

J'(0, 0), K'(0, −4), L'(−6, −4), and M'(−8, 0)

J'(2/3, 2/3), K'(2/3, 20/3), L'(9/3, 38/3), and M'(38/3, 2/3)


Respuesta :

Answer:

The vertices of the quadrilateral after a dilation with scale factor [tex]\frac{2}{3}[/tex] are [tex]J'(x,y) = (0,0)[/tex], [tex]K'(x,y) = (0,4)[/tex], [tex]L'(x,y) = (6, 8)[/tex] and [tex]M'(x,y) = (8,0)[/tex].

Step-by-step explanation:

Let suppose that center of dilation is located at origin, that is [tex]O(x,y) = (0,0)[/tex]. Vectorially speaking, dilation is described by following expression:

[tex]D'(x,y) = O(x,y) + r\cdot [D(x,y)-O(x,y)][/tex] (1)

Where:

[tex]O(x,y)[/tex] - Center of dilation.

[tex]D(x,y)[/tex] - Original point.

[tex]D'(x,y)[/tex] - Dilated point.

[tex]r[/tex] - Dilation factor.

If we know that [tex]O(x,y) = (0,0)[/tex], [tex]r = \frac{2}{3}[/tex], [tex]J(x,y) = (0,0)[/tex], [tex]K(x,y) = (0,6)[/tex], [tex]L(x,y) = (9,12)[/tex] and [tex]M(x,y) = (12,0)[/tex], then the dilated points are, respectively:

[tex]J'(x,y) = O(x,y) + r\cdot [J(x,y)-O(x,y)][/tex]

[tex]J'(x,y) = (0,0) +\frac{2}{3}\cdot [(0,0)-(0,0)][/tex]

[tex]J'(x,y) = (0,0)[/tex]

[tex]K'(x,y) = O(x,y) + r\cdot [K(x,y)-O(x,y)][/tex]

[tex]K'(x,y) = (0,0)+\frac{2}{3}\cdot [(0,6)-(0,0)][/tex]

[tex]K'(x,y) = (0,4)[/tex]

[tex]L'(x,y) = O(x,y) +r\cdot [L(x,y)-O(x,y)][/tex]

[tex]L'(x,y) = (0,0) + \frac{2}{3}\cdot [(9,12)-(0,0)][/tex]

[tex]L'(x,y) = (6, 8)[/tex]

[tex]M'(x,y) = O(x,y) +r\cdot [M(x,y)-O(x,y)][/tex]

[tex]M'(x,y) = (0,0) +\frac{2}{3}\cdot [(12,0)-(0,0)][/tex]

[tex]M'(x,y) = (8,0)[/tex]

The vertices of the quadrilateral after a dilation with scale factor [tex]\frac{2}{3}[/tex] are [tex]J'(x,y) = (0,0)[/tex], [tex]K'(x,y) = (0,4)[/tex], [tex]L'(x,y) = (6, 8)[/tex] and [tex]M'(x,y) = (8,0)[/tex].

  Option B will be the correct option.

Dilation of a point about the origin by a scale factor 'k',

  • If a point (a, b) is dilated by a scale factor 'k' about the origin, coordinates of the image point will be,

        (a, b) → (ka, kb)

Following the rule for dilation,

If a quadrilateral J(0, 0), K(0, 6), L(9, 12) and M(12, 0) is dilated by a scale factor [tex]\frac{2}{3}[/tex], coordinates of the image points will be,

[tex]J(0,0)\rightarrow J'(0, 0)[/tex]

[tex]K(0,4)\rightarrow K'(0, 4)[/tex]

[tex]L(9,12)\rightarrow L'(6,8)[/tex]

[tex]M(12,0)\rightarrow M'(8,0)[/tex]

     Therefore, Option B will be the correct option.

Learn more about the rule of dilation here,

https://brainly.com/question/22151723?referrer=searchResults