Respuesta :

Answer:

Perimeter of ΔDBC = 48 units

Step-by-step explanation:

It's given in he question,

ΔABD ~ ΔDBC

Therefore, by the definition of similar triangles,

Corresponding sides of both the triangle will be proportional.

[tex]\frac{AB}{DB}= \frac{BD}{BC}= \frac{AD}{DC}[/tex]

[tex]\frac{9}{12}= \frac{12}{16}= \frac{AD}{DC}[/tex]

[tex]\frac{3}{4}=\frac{AD}{DC}[/tex]

AD = [tex]\frac{3}{4}DC[/tex] ----------(1)

Since, perimeter of ΔABD = 36,

AB + BD + AD = 36

9 + 12 + AD = 36

AD = 36 - 21

AD = 15

From equation (1),

15 = [tex]\frac{3}{4}(DC)[/tex]

DC = 20

Perimeter of ΔDBC = DB + BC + DC

                                = 12 + 16 + 20

                                = 48

Therefore, perimeter of ΔDBC = 48 units is the answer.