Answer:
2.60
Step-by-step explanation:
Given that:
n = 1600
[tex]\hat p = 0.34[/tex]
[tex]P_o = 0.31[/tex]
The test statistics can be computed as:
[tex]Z = \dfrac{\hat p - P_o}{\sqrt{ \dfrac{P_o\times (1-P_o) } {n} }}[/tex]
[tex]Z = \dfrac{0.34-0.31}{\sqrt{ \dfrac{0.31 \times (1-0.31) } {1600} }}[/tex]
[tex]Z = \dfrac{0.03}{\sqrt{ \dfrac{0.31 \times (0.69) } {1600} }}[/tex]
[tex]Z = \dfrac{0.03}{\sqrt{ \dfrac{0.2139} {1600} }}[/tex]
[tex]Z = 2.60[/tex]