The required sum of the two square matrices is,
[tex]\left[\begin{array}{ccc}2&8&-4\\1&0&3\\-1&-2&1\end{array}\right][/tex]. Option B is correct.
Consider matrices A, B, C, and D,
[tex]A=\left[\begin{array}{cc}-1&4\\5&-2\\3&4\end{array}\right][/tex] , [tex]B =\left[\begin{array}{cc}4&4\\4&4\\4&4\end{array}\right][/tex], [tex]c= \left[\begin{array}{ccc}-1&2&5\\0&-4&1\\-4&3&1\end{array}\right][/tex], [tex]D = \left[\begin{array}{ccc}3&6&-9\\1&4&2\\3&-5&0\end{array}\right][/tex]
What is the matrix?
Matrix is defined as the arrangement of the number in the array between the square parenthesis.
Since Matrix C and D is a square matrix of 3 * 3 order.
[tex]C + D =\left[\begin{array}{ccc}-1&2&5\\0&-4&1\\-4&3&1\end{array}\right]+\left[\begin{array}{ccc}3&6&-9\\1&4&2\\3&-5&0\end{array}\right][/tex]
[tex]C + D =\left[\begin{array}{ccc}-1+3&2+6&5-9\\0+1&-4+4&1+2\\-4+3&3-5&1+0\end{array}\right][/tex]
[tex]C+D=\left[\begin{array}{ccc}2&8&-4\\1&0&3\\-1&-2&1\end{array}\right][/tex]
Thus, the required sum of the two square matrices is,[tex]\left[\begin{array}{ccc}2&8&-4\\1&0&3\\-1&-2&1\end{array}\right][/tex]. Option B is correct.
Learn more about matrix here:
https://brainly.com/question/9967572
#SPJ2