What is X=? // which choice is correct ? (Ignore my guessing choice mark)

Given:
A figure of a right angle triangle.
To find:
The length of the shorter leg.
Solution:
In a right angle triangle,
[tex]\tan\theta =\dfrac{Opposite}{Adjacent}[/tex]
In the given triangle,
[tex]\tan (60^\circ) =\dfrac{18}{x}[/tex]
[tex]\sqrt{3}=\dfrac{18}{x}[/tex]
[tex]x=\dfrac{18}{\sqrt{3}}[/tex]
[tex]x=\dfrac{18}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}[/tex]
On further simplification, we get
[tex]x=\dfrac{18\sqrt{3}}{3}[/tex]
[tex]x=6\sqrt{3}[/tex]
[tex]x=10.3923[/tex]
[tex]x\approx 10.4[/tex]
Therefore, the length of the shortest leg is 10.4 and the correct option is B.