Respuesta :

Given:

A figure of a right angle triangle.

To find:

The length of the shorter leg.

Solution:

In a right angle triangle,

[tex]\tan\theta =\dfrac{Opposite}{Adjacent}[/tex]

In the given triangle,

[tex]\tan (60^\circ) =\dfrac{18}{x}[/tex]

[tex]\sqrt{3}=\dfrac{18}{x}[/tex]

[tex]x=\dfrac{18}{\sqrt{3}}[/tex]

[tex]x=\dfrac{18}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}[/tex]

On further simplification, we get

[tex]x=\dfrac{18\sqrt{3}}{3}[/tex]

[tex]x=6\sqrt{3}[/tex]

[tex]x=10.3923[/tex]

[tex]x\approx 10.4[/tex]

Therefore, the length of the shortest leg is 10.4 and the correct option is B.