Answer:
The standard deviation = 1.9
Step-by-step explanation:
standard deviation, ρ = sqrt ( [tex]\frac{sum(x_{i} - u)^{2} }{N}[/tex])
Where u is the mean of the data, [tex]x_{i}[/tex] each given value, and N is the number of data given.
Mean, u = [tex]\frac{6+5+2+5+8}{5}[/tex]
= 5.2
So that;
[tex](6-5.2)^{2}[/tex] = [tex](0.8)^{2}[/tex] = 0.64
[tex](5-5.2)^{2}[/tex] = [tex](-0.2)^{2}[/tex] = 0.04
[tex](2-5.2)^{2}[/tex] = [tex](-3.2)^{2}[/tex] = 10.24
[tex](5-5.2)^{2}[/tex] = [tex](-0.2)^{2}[/tex] = 0.04
[tex](8-5.2)^{2}[/tex] = [tex](2.8)^{2}[/tex] = 7.84
Sum = 18.8
So that;
[tex]\sqrt{\frac{18.8}{5} }[/tex] = [tex]\sqrt{3.76}[/tex]
= 1.9391
= 1.9
The standard deviation of the given data is 1.9