Respuesta :

Answer:

The standard deviation = 1.9

Step-by-step explanation:

standard deviation, ρ = sqrt ( [tex]\frac{sum(x_{i} - u)^{2} }{N}[/tex])

Where u is the mean of the data, [tex]x_{i}[/tex] each given value, and N is the number of data given.

Mean, u = [tex]\frac{6+5+2+5+8}{5}[/tex]

              = 5.2

So that;

[tex](6-5.2)^{2}[/tex]  = [tex](0.8)^{2}[/tex] = 0.64

[tex](5-5.2)^{2}[/tex] = [tex](-0.2)^{2}[/tex] = 0.04

[tex](2-5.2)^{2}[/tex]  = [tex](-3.2)^{2}[/tex] = 10.24

[tex](5-5.2)^{2}[/tex] = [tex](-0.2)^{2}[/tex] = 0.04

[tex](8-5.2)^{2}[/tex] = [tex](2.8)^{2}[/tex] = 7.84

Sum = 18.8

So that;

[tex]\sqrt{\frac{18.8}{5} }[/tex]  = [tex]\sqrt{3.76}[/tex]

          = 1.9391

          = 1.9

The standard deviation of the given data is 1.9