Respuesta :

Answer:

w1:w2 = 16:1

Explanation:

As we know that ration of amplitude is equal to

[tex]\frac{a_1}{a_2} = \sqrt{\frac{w_1}{w_2} }[/tex]

here w1 and w2 are the widths of the slit.

[tex]\frac{I _{min}}{I_{max}} = \frac{(a_1-a_2)^2}{(a_1+a_2)^2} \\\frac{9}{25} = \frac{(1-\frac{a_2}{a_1} )^2}{(1+\frac{a_2}{a_1} )^2} \\\frac{3}{5} = \frac{(1-\frac{a_2}{a_1} )}{(1+\frac{a_2}{a_1} )}\\8 \frac{a_2}{a_1} = 2\\\frac{a_1}{a_2} = 4[/tex]

Again

[tex]\frac{a_1}{a_2} = \sqrt{\frac{w_1}{w_2} }[/tex]

[tex]4 = \sqrt{\frac{w_1}{w_2} }\\\frac{w_1}{w_2} = 16[/tex]

w1:w2 = 16:1