Respuesta :

Answer:

Proved

Step-by-step explanation:

Given

[tex]a_n = 2n[/tex]

Required

Prove that [tex]S_n = n(n+1)[/tex]

The given sequence is an arithmetic sequence.

The Sn of this sequence is:

[tex]S_n = \frac{n}{2}(a_1 + a_n)[/tex]

Calculate a1

[tex]a_n =2n[/tex]

[tex]a_1 =2*1[/tex]

[tex]a_1 =2[/tex]

So, we have:

[tex]S_n = \frac{n}{2}(a_1 + a_n)[/tex]

[tex]S_n = \frac{n}{2}(2 + 2n)[/tex]

Factor out 2

[tex]S_n = \frac{n*2}{2}(1 + n)[/tex]

[tex]S_n = n(1 + n)[/tex]

[tex]S_n = n(n + 1)[/tex] --- Proved