Respuesta :

Answer:

ΔABD ≅ ΔACD by SAS, therefore;

[tex]\overline {BD} \cong \overline {CA}[/tex] by CPCTC

Step-by-step explanation:

The two column proof is presented as follows;

Statement [tex]{}[/tex]                   Reason

ABCD is a trapezoid [tex]{}[/tex]  Given

[tex]\overline {BA} \cong \overline {CD}[/tex]  [tex]{}[/tex]                   Given

[tex]\overline {BC} \parallel \overline {AD}[/tex]   [tex]{}[/tex]                   Definition of a trapezoid

ABCD is an isosceles trapezoid  [tex]{}[/tex]    Left and right leg are equal

∠BAD ≅ ∠CDA  [tex]{}[/tex]          Base angle of an isosceles trapezoid are congruent

[tex]\overline {AD} \cong \overline {AD}[/tex]   [tex]{}[/tex]                  Reflexive property

ΔABD ≅ ΔACD   [tex]{}[/tex]         By SAS rule of congruency

[tex]\overline {BD} \cong \overline {CA}[/tex]   [tex]{}[/tex]                  CPCTC

CPCTC; Congruent Parts of Congruent Triangles are Congruent

SAS; Side Angle Side rule of congruency

Answer:

Step-by-step explanation:

just did it

Ver imagen jazzmarie200