Answer:
[tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{1}{2} = f(C)[/tex]
The function f(x) is continuous
Step-by-step explanation:
Explanation:-
Given that the function
[tex]f(x) = \frac{x^{2} }{x^{2} +4}[/tex]
put x = c =2
[tex]f(c) = f(2) = \frac{(2)^{2} }{(2)^{2} +4} = \frac{4}{8} = \frac{1}{2}[/tex]
[tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{2^{2} }{2^{2} +4} = \frac{4}{4+4} = \frac{4}{8}[/tex]
[tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{1}{2}[/tex]
[tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{1}{2} = f(C)[/tex]
Given function f(x) is continuous