Respuesta :

Answer:

[tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{1}{2} = f(C)[/tex]

The  function f(x) is continuous

Step-by-step explanation:

Explanation:-

Given that the function

                   [tex]f(x) = \frac{x^{2} }{x^{2} +4}[/tex]

    put  x = c =2

                 [tex]f(c) = f(2) = \frac{(2)^{2} }{(2)^{2} +4} = \frac{4}{8} = \frac{1}{2}[/tex]

              [tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{2^{2} }{2^{2} +4} = \frac{4}{4+4} = \frac{4}{8}[/tex]

              [tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{1}{2}[/tex]

[tex]\lim_{x \to 2} \frac{x^{2} }{x^{2} +4} = \frac{1}{2} = f(C)[/tex]

      Given function f(x) is continuous