Answer:
The answer is below
Step-by-step explanation:
Show that f(x) f(y) = f(x+y)
From trigonometric:
sin(x + y) = sinxcosy + cosxsiny
sin(x - y) = sinxcosy - cosxsiny
cos(x + y) = cosxcosy - sinxsiny
cos(x - y) = cosxcosy + sinxsiny
[tex]f(x)=\left[\begin{array}{ccc}cosx&-sinx&0\\sinx&cosx&0\\0&0&1\end{array}\right] ,f(y)=\left[\begin{array}{ccc}cosy&-siny&0\\siny&cosy&0\\0&0&1\end{array}\right] \\\\\\f(x)f(y)=\left[\begin{array}{ccc}cosxcosy-sinxsiny&-cosxsiny-sinxcosy&0\\sinxcosy+cosxsiny&-sinxsiny+cosxcosy&0\\0&0&1\end{array}\right] \\\\\\f(x)f(y)=\left[\begin{array}{ccc}cos(x+y)&-sin(x+y)&0\\sin(x+y)&cos(x+y)&0\\0&0&1\end{array}\right] \\\\\\[/tex]
[tex]f(x+y)=\left[\begin{array}{ccc}cos(x+y)&-sin(x+y)&0\\sin(x+y)&cos(x+y)&0\\0&0&1\end{array}\right] \\\\\\Therefore\ f(x)f(y)=f(x+y)[/tex]