Respuesta :

Answer:

1 - y + y²

Step-by-step explanation:

1 + y³ is a sum of cubes and factors in general as

a³ + b³ = (a + b)(a² - ab + b²) , then

1 + y³

= (1 + y)(1² - 1(y) + y²) = (1 + y)(1 - y + y²)

Then

[tex]\frac{1+y^3}{1+y}[/tex]

= [tex]\frac{(1+y)(1-y+y^2)}{1+y}[/tex] ← cancel out the common factor (1 + y)

= 1 - y + y²