Given:
The polynomial is:
[tex]-5x^3y^3+8x^4y^2-xy^5-2x^2y^4+8x^6+3x^2y^4-6xy^5[/tex]
To find:
The simplified form of the given polynomial in standard form.
Solution:
We have,
[tex]-5x^3y^3+8x^4y^2-xy^5-2x^2y^4+8x^6+3x^2y^4-6xy^5[/tex]
Combining the like terms, we get
[tex]=-5x^3y^3+8x^4y^2+(-2x^2y^4+3x^2y^4)+8x^6+(-xy^5-6xy^5)[/tex]
[tex]=-5x^3y^3+8x^4y^2+x^2y^4+8x^6-7xy^5[/tex]
Now, rewrite this polynomial in standard form.
[tex]=8x^6+8x^4y^2-5x^3y^3+x^2y^4-7xy^5[/tex]
Therefore, the required polynomial in standard form is [tex]8x^6+8x^4y^2-5x^3y^3+x^2y^4-7xy^5[/tex].