The magnitude of the vector is 17.03 units to two decimal places.
Since the vector starts at point (-5, 6) and ends at point (8, -5), the magnitude of the vector R is given by R = √[(x₂ - x₁)² + (y₂ - y₁)²] where (x₁, y₁) = (-5, 6) and (x₂, y₂) = (8, -5).
Substituting the values of the variables into the equation, we have
R = √[(x₂ - x₁)² + (y₂ - y₁)²]
R = √[(8 - (-5))² + ((-5) - 6)²]
R = √[(8 + 5)² + (-5 -6 )²]
R = √[(13)² + (-11)²]
R = √[169 + 121]
R = √290
R = 17.029 units
R = 17.03 units to two decimal places.
So, the magnitude of the vector is 17.03 units to two decimal places.
Learn more about magnitude of a vector here:
https://brainly.com/question/22409757