Respuesta :
The required ounces will be "x = 12 ounces" and "y = 54 ounces".
Let,
"x" ounces of 30% alcohol.
"y" ounces of 41% alcohol.
We'll have to combine 66 ounces of 39% solution, we get
→ [tex]x+y=66[/tex]
→ [tex]y = 66-x[/tex]
then,
→ [tex]\frac{x\times 30}{100} +\frac{y\times 41}{100}=\frac{66\times 39}{100}[/tex]
→ [tex]30x+41y= 66\times 39[/tex]
→ [tex]30x+41(66-x) = 2574[/tex]
→ [tex]30x+2706-41x = 2574[/tex]
→ [tex]-11x = 2574-2706[/tex]
→ [tex]x = \frac{-132}{-11}[/tex]
→ [tex]= 12[/tex] (ounces)
or,
→ [tex]y = 66-x[/tex]
→ [tex]= 66-12[/tex]
→ [tex]= 54[/tex] (ounces)
Thus the above answer is correct.
Learn more:
https://brainly.com/question/18919738