Respuesta :

The required ounces will be "x = 12 ounces" and "y = 54 ounces".

Let,

"x" ounces of 30% alcohol.

"y" ounces of 41% alcohol.

We'll have to combine 66 ounces of 39% solution, we get

→ [tex]x+y=66[/tex]

→ [tex]y = 66-x[/tex]

then,

→ [tex]\frac{x\times 30}{100} +\frac{y\times 41}{100}=\frac{66\times 39}{100}[/tex]

→    [tex]30x+41y= 66\times 39[/tex]

→ [tex]30x+41(66-x) = 2574[/tex]

→ [tex]30x+2706-41x = 2574[/tex]

→                    [tex]-11x = 2574-2706[/tex]

→                          [tex]x = \frac{-132}{-11}[/tex]

→                             [tex]= 12[/tex] (ounces)

or,

→                          [tex]y = 66-x[/tex]

→                             [tex]= 66-12[/tex]

→                             [tex]= 54[/tex] (ounces)    

Thus the above answer is correct.

Learn more:

https://brainly.com/question/18919738

Otras preguntas