[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
let one of the integers be x,
other one = 2x - 2
now, according to question :
- [tex] {x}^{2} + (2x - 2) {}^{2} = 628[/tex]
- [tex] {x}^{2} + 4 {x}^{2} + 4 - 8 x = 628[/tex]
- [tex]5 {x}^{2} - 8x = 628 - 4[/tex]
- [tex]5 {x}^{2} - 8x = 624[/tex]
- [tex]5 {x}^{2} - 8x - 624 = 0[/tex]
- [tex]5 {x}^{2} - 60 x+ 52 x- 624 = 0[/tex]
- [tex]5x(x - 12) + 52(x - 12) = 0[/tex]
- [tex](5x + 52)(x - 12) = 0[/tex]
now, since the Integers are positive so the value obtained from (5x + 52) = 0 can't hold true.
so, x - 12 = 0
the first number is :
second number is :
- [tex](2 \times 12) - 2[/tex]