Respuesta :

Answer:

A

Step-by-step explanation:

We are given the function:

[tex]\displaystyle f(x) = e^x[/tex]

And we want to determine the value of:

[tex]\displaystyle \ln (f'(2))[/tex]

First, find f'. We can take the derivative of both sides with respect to x:

[tex]\displaystyle \begin{aligned} f'(x) & = \frac{d}{dx}\left[ e^x\right] \\ \\ &= e^x \end{aligned}[/tex]

Find f'(2):

[tex]\displaystyle \begin{aligned}f'(2) & = e^{(2)} \\ \\ & = e^2 \end{aligned}[/tex]

We can take the natural logarith of both sides:

[tex]\displaystyle \ln (f'(2)) = \ln e^2[/tex]

Simplify. In conclusion:

[tex]\displaystyle \ln (f'(2)) = 2[/tex]

Our answer is A.