Respuesta :

Answer:

n = 7/2

Step-by-step explanation:

We are given the equation:-

[tex] \displaystyle \large{8 \times \sqrt{2} = {2}^{n} }[/tex]

To solve an exponential equation, first, we convert the whole equation with same base.

Let our main base is 2 for whole equation, the following number must be:-

  • 8 = 2•2•2 = 2^3
  • √2 = 2^(1/2) —> Law of Exponent

From √2 = 2^(1/2) comes from:-

[tex] \displaystyle \large{ {a}^{ \frac{m}{ n } } = \sqrt[n]{ {a}^{m} } }[/tex]

  • m = 1
  • n = 2
  • a = 2

[tex] \displaystyle \large{ {2}^{ \frac{1}{ 2 } } = \sqrt{2} }[/tex]

Rewrite the equation with base 2.

[tex] \displaystyle \large{ {2}^{3} \times {2}^{ \frac{1}{2} } = {2}^{n} }[/tex]

Recall the law of exponent:-

[tex] \displaystyle \large{ {a}^{m} \times {a}^{n} = {a}^{m + n} }[/tex]

Therefore:-

[tex] \displaystyle \large{ {2}^{3 + \frac{1}{2} } = {2}^{n} } \\ \displaystyle \large{ {2}^{ \frac{6}{2} + \frac{1}{2} } = {2}^{n} } \\ \displaystyle \large{ {2}^{ \frac{7}{2} } = {2}^{n} }[/tex]

Compare the exponent and thus:-

n = 7/2.