Respuesta :

Paounn

Answer:

1

Step-by-step explanation:

let's substitute the numbers:

[tex]d=\sqrt{[-2-(-3)]^2+(4-4)^2}=\sqrt{(-2+3)^2-0^2}= \sqrt1= 1[/tex]

The value of d if [tex](x_1,y_1)=(-3,4)[/tex] and [tex](x_2,y_2)=(-2,4)[/tex] in [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] is 1.

Distance

The distance between the two co-ordinates points can be evaluated by using the formula [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] where, [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are the coordinates of the endpoints.

How to evaluate the distance?

The given coordinate points are [tex](x_1,y_1)=(-3,4)[/tex] and [tex](x_2,y_2)=(-2,4)[/tex].

Substitute the values of the known parameters in the formula [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] as-

[tex]d=\sqrt{(-2-(-3))^2+(4-4)^2}\\=\sqrt{(-2+3)^2}\\=1[/tex]

Hence, the value of d is 1.

Learn more about the distance between the coordinate points here- https://brainly.com/question/14364020

#SPJ2