Section 5.2 Problem 17:

Solve the initial value problem.
[tex]4y'' - 12y' + 9y = 0[/tex]
[tex]y(0) = 3[/tex]
[tex]y'(0) = \frac{5}{2} [/tex]

Respuesta :

This DE has characteristic equation

[tex]4r^2 - 12r + 9r = (2r - 3)^2 = 0[/tex]

with a repeated root at r = 3/2. Then the characteristic solution is

[tex]y_c = C_1 e^{\frac32 x} + C_2 x e^{\frac32 x}[/tex]

which has derivative

[tex]{y_c}' = \dfrac{3C_1}2 e^{\frac32 x} + \dfrac{3C_2}2 x e^{\frac32x} + C_2 e^{\frac32 x}[/tex]

Use the given initial conditions to solve for the constants:

[tex]y(0) = 3 \implies 3 = C_1[/tex]

[tex]y'(0) = \dfrac52 \implies \dfrac52 = \dfrac{3C_1}2 + C_2 \implies C_2 = -2[/tex]

and so the particular solution to the IVP is

[tex]\boxed{y(x) = 3 e^{\frac32 x} - 2 x e^{\frac32 x}}[/tex]