contestada

A 0.58 kg mass is moving horizontally with a speed of 6.0 m/s when it strikes a vertical wall. The mass rebounds with a speed of 4.0 m/s. What is the magnitude of the change in linear momentum of the mass

Respuesta :

Answer:

[tex]5.8\; {\rm kg\cdot m \cdot s^{-1}}[/tex].

Explanation:

If the mass of an object is [tex]m[/tex] and the velocity of that object is [tex]v[/tex], the linear momentum of that object would be [tex]m\, v[/tex].

Assume that the initial velocity of the mass is positive ([tex]6.0\; {\rm m\cdot s^{-1}}[/tex].) However, the direction of the velocity is reversed after the impact. Thus, the sign of the new velocity of the object would be negative- the opposite of that of the initial velocity. The new velocity would be [tex](-4.0\; {\rm m\cdot s^{-1}})[/tex].

Thus, the change in the velocity of the mass would be:

[tex]\begin{aligned}& (\text{Change in Velocity}) \\ =\; & (\text{Final Velocity}) - (\text{Initial Velocity}) \\ =\; & (-4.0\; {\rm m\cdot s^{-1}}) - (6.0\; {\rm m\cdot s^{-1}}) \\ =\; & (-10\; {\rm m\cdot s^{-1})\end{aligned}[/tex].

The change in the linear momentum of the mass would be:

[tex]\begin{aligned} & \text{change in momentum} \\ =\; & (\text{mass}) \times (\text{change in velocity}) \\ =\; & 0.58\; {\rm kg} \times (-10\; {\rm m\cdot s^{-1}}) \\ =\; & (-5.8\; {\rm kg \cdot m \cdot s^{-1}})\end{aligned}[/tex].

Thus, the magnitude of the change of the linear momentum would be [tex]5.8\; {\rm kg \cdot m \cdot s^{-1}}[/tex].