Please help soon!!
In the figure below, mZ1=2x° and mZ2=(x+96)
Find the angle measures.

Here , we are going to use the property of linear pair . So , this property states that on any line , the sum of all angles formed by drawing other lines on the initial line is 180° or π radians .
Coming back to the question , we are provided that ;
Now by property of linear pair , we have ;
[tex]{: \implies \quad \sf \angle \: 1 + \angle \: 2 = 180^{\circ}}[/tex]
Putting the values ;
[tex]{: \implies \quad \sf x - 18^{\circ} + 5x = 180^{\circ}}[/tex]
[tex]{: \implies \quad \sf 6x = 180^{\circ}+18^{\circ}}[/tex]
[tex]{: \implies \quad \sf 6x=198^{\circ}}[/tex]
[tex]{: \implies \quad \sf x = \dfrac{198^{\circ}}{6}}[/tex]
[tex]{: \implies \quad \sf x=33^{\circ}}[/tex]
Now , we can find measures of [tex]{\sf \angle \: 1}[/tex] & [tex]{\sf \angle \: 2}[/tex] , by putting the value of x
[tex]{: \implies \quad \sf \angle \: 1 = (x-18)^{\circ}}[/tex]
[tex]{: \implies \quad \sf \angle \: 1 = (33-18)^{\circ}}[/tex]
[tex]{\boxed{\bf \therefore \quad \angle \: 1 = 15^{\circ}}}[/tex]
[tex]{: \implies \quad \sf \angle \: 2 = {5x}^{\circ}}[/tex]
[tex]{: \implies \quad \sf \angle \: 2 = {5\times 33}^{\circ}}[/tex]
[tex]{\boxed{\bf \therefore \quad \angle \: 2 = {165}^{\circ}}}[/tex]
We are Done :D
We know that,
Sum of two angles in a linear pair = 180°
Therefore,
∠1 + ∠2 = 180°
=> (x - 18)° + 5x° = 180°
=> x° - 18° + 5x° = 180°
=> 6x° - 18° = 180°
=> 6x° = 180° + 18°
=> 6x° = 198°
=> x = 198°/ 6°
=> x = 33°
Now,
∠1 = (x - 18)°
= 33° - 18°
= 15°
∠2 = 5x°
= 5(33°)
= 165°
Therefore, the two angles are 15° and 165°