Respuesta :

Answer:

see below

Step-by-step explanation:

given function: [tex]Cos(x)=\frac{1}{3}[/tex]

  • ------------------------------------------------------------------------------------------------------

Cosine - (In a right triangle, the ratio of the length of the adjacent side to the length of the hypotenuse.)

  • ---------------------------------------------------------------------------------------------------

#1: Take the inverse cosine of both sides of the equation to extract [tex]x[/tex] from inside the cosine.

[tex]x=arccos\frac{1}{3}[/tex]

#2: Evaluate

[tex]x=1.23095941[/tex]

#3: The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from [tex]2[/tex]π to find the solution in the fourth quadrant.

[tex]x=2(3.14159265)-1.23095941[/tex]

#4: Simplify the equation above.

- Multiply [tex]2[/tex] by [tex]3.14159265[/tex]

[tex]x=6.2831853-1.23095941[/tex]

- Subtract [tex]1.23095941[/tex] from [tex]6.2831853[/tex]

[tex]x=5.05222588[/tex]

#5: Find the period.

- The period of the function can be calculated using [tex]\frac{2\pi }{|b|}[/tex].

[tex]\frac{2\pi }{|b|}[/tex]

- Replace [tex]b[/tex] with [tex]1[/tex]  in the formula for period.

[tex]\frac{2\pi }{|1|}[/tex]

#6: Solve the equation.

- The absolute value is the distance between a number and zero. The distance between [tex]0[/tex] and [tex]1[/tex] is [tex]1[/tex].

[tex]\frac{2\pi }{1}[/tex]

- Divide [tex]2\pi[/tex] by [tex]1.[/tex]

[tex]2\pi[/tex]

The period of the [tex]cos(x)[/tex] function is [tex]2\pi[/tex] so values will repeat every [tex]2\pi[/tex] radians in both directions.

[tex]x=1.23095941+2\pi n,5.05222588+2\pi n[/tex], for any integer [tex]n[/tex]