Solution:
[tex]\text G\text i\text v\text e\text n\ \text e\text x\text p\text r\text e\text s\text s\text i\text o\text n: 20x^{3} + 34x^{2} + 6x[/tex]
Step-1: Find the GCF of the terms.
[tex]20x^{3} \ \ \ = \ \ \ 2 \times 2 \times 5 \times x \times x \times x \\34x^{2} \ \ \ = \ \ \ 2 \times 17 \times x \times x \\ 6x \ \ \ \ \ \ = \ \ \ 2 \times 3 \times x[/tex]
GCF = 2x
Step-2: Factor the expression using the GCF.
[tex]20x^{3} + 34x^{2} + 6x \\\\ {2x(10x^{2} + 17x + 3)}[/tex]
Step-3: Further factorize.
[tex]{2x(10x^{2} + 17x + 3)}[/tex]
[tex]2x(2x + 3)(5x + 1)[/tex]
Thus, the factorized expression is [tex]2x(2x + 3)(5x + 1)[/tex].