I WILL MARK BRAINILIEST !!! Factor the polynomial 20x3 + 34x2 + 6x completely.
2x(2x + 3)(5x + 1)
2x(2x + 1)(5x + 3)
2(2x + 3)(5x + 1)
(4x2 + 6x)(5x + 1)

Respuesta :

Solution:

[tex]\text G\text i\text v\text e\text n\ \text e\text x\text p\text r\text e\text s\text s\text i\text o\text n: 20x^{3} + 34x^{2} + 6x[/tex]

Step-1: Find the GCF of the terms.

[tex]20x^{3} \ \ \ = \ \ \ 2 \times 2 \times 5 \times x \times x \times x \\34x^{2} \ \ \ = \ \ \ 2 \times 17 \times x \times x \\ 6x \ \ \ \ \ \ = \ \ \ 2 \times 3 \times x[/tex]

GCF = 2x

Step-2: Factor the expression using the GCF.

[tex]20x^{3} + 34x^{2} + 6x \\\\ {2x(10x^{2} + 17x + 3)}[/tex]

Step-3: Further factorize.

[tex]{2x(10x^{2} + 17x + 3)}[/tex]

[tex]2x(2x + 3)(5x + 1)[/tex]

Thus, the factorized expression is [tex]2x(2x + 3)(5x + 1)[/tex].