Respuesta :

Answer:

DC = 39

Step-by-step explanation:

From inspection of the diagram:

  • EA is tangent to both circles
  • DE is the radius of circle D
  • CA is the radius of circle C

The tangent of a circle is always perpendicular to the radius, therefore:

DE ⊥ EA and CA ⊥ EA

As ∠DEB and ∠BAC are both 90°, then DE is parallel to CA.

Therefore, ∠DBE and ∠ABC are vertically opposite angles, and are therefore equal.

As triangles ΔBED and ΔBAC have two pairs of corresponding congruent angles, the triangles are similar.

Therefore:

[tex]\implies \sf \dfrac{DE}{CA}=\dfrac{EB}{BA}[/tex]

[tex]\implies \sf \dfrac{10}{5}=\dfrac{24}{BA}[/tex]

[tex]\implies \sf BA=12[/tex]

Using Pythagoras' Theorem for ΔBED to find DB:

[tex]\implies \sf DE^2+EB^2=DB^2[/tex]

[tex]\implies \sf 10^2+24^2=DB^2[/tex]

[tex]\implies \sf DB^2=676[/tex]

[tex]\implies \sf DB=\sqrt{676}[/tex]

[tex]\implies \sf DB=26[/tex]

Using Pythagoras' Theorem for ΔBAC to find BC:

[tex]\implies \sf CA^2+BA^2=BC^2[/tex]

[tex]\implies \sf 5^2+12^2=BC^2[/tex]

[tex]\implies \sf BC^2=169[/tex]

[tex]\implies \sf BC=\sqrt{169}[/tex]

[tex]\implies \sf BC=13[/tex]

Therefore, the distance between the center of the circles DC is:

[tex]\begin{aligned} \implies \sf DC & = \sf DB + BC\\& = \sf 26 + 13\\& = \sf 39\end{aligned}[/tex]

Ver imagen semsee45

Use Pythagorean theorem

  • DB²=DE²+EB²
  • DB²=10²+24²
  • DB²=100+576
  • DB²=676
  • DB=26

Now use proportion

  • DE/DB=AC/BC
  • 10/26=5/BC
  • 5/13=5/BC
  • BC=13

Now

DC=DB+BC=26+13=39