Respuesta :

Answer:

6 cm²

Step-by-step explanation:

Since 3 side lengths are given, I assume that this figure is a triangle. The area of a triangle can be determined by using hero's formula.

[tex]\text{Area of triangle} = \sqrt{\text{s(s - a)(s - b)(s - c)}[/tex]

⇒ s = Perimeter/2

⇒ a, b, and c = side lenths of triangle

Replacing a, b, and c as the given side lengths:

[tex]\implies \text{Area of triangle} = \sqrt{\text{s(s - 5)(s - 3)(s - 4)}[/tex]

Determining the perimeter of the triangle:

[tex]\text{Perimeter of triangle = Sum of it's side lengths}[/tex]

[tex]\implies \text{Perimeter of triangle =}\ 5 + 4 + 3[/tex]

[tex]\implies \text{Perimeter of triangle =}\ 12 \ \text{cm}[/tex]

Determining the half of perimeter:

[tex]\text{Half of perimeter} = s = \dfrac{\text{Perimeter}}{2}[/tex]

[tex]\implies s = \dfrac{12}{2}[/tex]

[tex]\implies s = 6[/tex]

Replacing the value of "s" in the formula:

[tex]\implies \text{Area of triangle} = \sqrt{\text{6(6 - 5)(6 - 3)(6 - 4)}[/tex]

Evaluating the area:

[tex]\implies \text{Area of triangle} = \sqrt{\text{6(6 - 5)(6 - 3)(6 - 4)}[/tex]

[tex]\implies \text{Area of triangle} = \sqrt{\text{6(1)(3)(2)}[/tex]

[tex]\implies \text{Area of triangle} = \sqrt{\text{6(6)}[/tex]

[tex]\implies \text{Area of triangle} = 6 \ \text{cm}^{2}[/tex]