Respuesta :
Answer:
6 cm²
Step-by-step explanation:
Since 3 side lengths are given, I assume that this figure is a triangle. The area of a triangle can be determined by using hero's formula.
[tex]\text{Area of triangle} = \sqrt{\text{s(s - a)(s - b)(s - c)}[/tex]
⇒ s = Perimeter/2
⇒ a, b, and c = side lenths of triangle
Replacing a, b, and c as the given side lengths:
[tex]\implies \text{Area of triangle} = \sqrt{\text{s(s - 5)(s - 3)(s - 4)}[/tex]
Determining the perimeter of the triangle:
[tex]\text{Perimeter of triangle = Sum of it's side lengths}[/tex]
[tex]\implies \text{Perimeter of triangle =}\ 5 + 4 + 3[/tex]
[tex]\implies \text{Perimeter of triangle =}\ 12 \ \text{cm}[/tex]
Determining the half of perimeter:
[tex]\text{Half of perimeter} = s = \dfrac{\text{Perimeter}}{2}[/tex]
[tex]\implies s = \dfrac{12}{2}[/tex]
[tex]\implies s = 6[/tex]
Replacing the value of "s" in the formula:
[tex]\implies \text{Area of triangle} = \sqrt{\text{6(6 - 5)(6 - 3)(6 - 4)}[/tex]
Evaluating the area:
[tex]\implies \text{Area of triangle} = \sqrt{\text{6(6 - 5)(6 - 3)(6 - 4)}[/tex]
[tex]\implies \text{Area of triangle} = \sqrt{\text{6(1)(3)(2)}[/tex]
[tex]\implies \text{Area of triangle} = \sqrt{\text{6(6)}[/tex]
[tex]\implies \text{Area of triangle} = 6 \ \text{cm}^{2}[/tex]