What are the solutions of x2 = 8 – 5x? startfraction 5 minus startroot 57 endroot over 2 endfraction comma startfraction 5 startroot 57 endroot over 2 endfraction startfraction negative 5 minus startroot 57 endroot over 2 endfraction comma startfraction negative 5 startroot 57 endroot over 2 endfraction startfraction negative 47 over 4 endfraction comma startfraction 67 over 4 endfraction startfraction negative 67 over 4 endfraction comma startfraction 47 over 4 endfraction

Respuesta :

The solution of the given quadratic equation are,

[tex]x=\frac{-5-\sqrt{57} }{2}[/tex],[tex]x=\frac{-5+\sqrt{57} }{2}[/tex]

The equation to solve is given as

[tex]x^2=-5x+8[/tex]

Rearrange the given equation in standard form, [tex]ax^2+bx+c=0[/tex]

where,  a,b and c are constants.

Therefore, we add 5x-8 on both sides to get,

[tex]x^2+5x-8=0[/tex]

Here, a=1,b=5 and c=-8

The solution to the above equation is

What is the quadratic formula?

[tex]x=\frac{-b\±\sqrt{b^2-4ac} }{2a}[/tex]

Use the value of a,b,c in the quadratic formula and solve for x

[tex]x=\frac{-5\±\sqrt{5^2-4(1)(-5)} }{2(1)}[/tex]

[tex]x=\frac{-5\±\sqrt{25+35} }{2(1)}[/tex]

[tex]x=\frac{-5\±\sqrt{57} }{2(1)}[/tex]

Therefore, the solutions are

[tex]x=\frac{-5-\sqrt{57} }{2},x=\frac{-5+\sqrt{57} }{2}[/tex]

To learn more about the quadratic equation visit:

https://brainly.com/question/25841119

Answer:

answer is b

Step-by-step explanation: