Respuesta :
The solution of the given quadratic equation are,
[tex]x=\frac{-5-\sqrt{57} }{2}[/tex],[tex]x=\frac{-5+\sqrt{57} }{2}[/tex]
The equation to solve is given as
[tex]x^2=-5x+8[/tex]
Rearrange the given equation in standard form, [tex]ax^2+bx+c=0[/tex]
where, a,b and c are constants.
Therefore, we add 5x-8 on both sides to get,
[tex]x^2+5x-8=0[/tex]
Here, a=1,b=5 and c=-8
The solution to the above equation is
What is the quadratic formula?
[tex]x=\frac{-b\±\sqrt{b^2-4ac} }{2a}[/tex]
Use the value of a,b,c in the quadratic formula and solve for x
[tex]x=\frac{-5\±\sqrt{5^2-4(1)(-5)} }{2(1)}[/tex]
[tex]x=\frac{-5\±\sqrt{25+35} }{2(1)}[/tex]
[tex]x=\frac{-5\±\sqrt{57} }{2(1)}[/tex]
Therefore, the solutions are
[tex]x=\frac{-5-\sqrt{57} }{2},x=\frac{-5+\sqrt{57} }{2}[/tex]
To learn more about the quadratic equation visit:
https://brainly.com/question/25841119