Respuesta :

[tex]\rule{300}{1} \\ \diamond\large\blue\textsf{\textbf{\underline{Given question:-}}}[/tex]

    What is the volume of a sphere with a diameter of 10m, rounded to the

nearest tenth of a cubic metre  (m³)?

[tex]\diamond\large\textsf{\textbf{\underline{Answer and How to solve:-}}}[/tex]

[tex]\it{Volume\:of\:a\:sphere:-}[/tex]

[tex]\longmapsto\sf{V=\dfrac{4}{3} \pi r^3}[/tex]

[tex]\bold{\underline{Where:-}}[/tex]

  • V=Volume
  • π = pi
  • r=radius

Provided information:-

 

  • diameter = 10 m

What we need in order to find the Volume:-

  • radius

How to find the radius if we have the diameter?

  • Since the radius is exactly one-half of the diameter, we divide the diameter by 2:-

[tex]\bold{r=d\div2}[/tex]

Replace d with 10:-

[tex]\bold{r=10\div2}[/tex]

Therefore, the radius of the sphere is

[tex]\bold{r=5}[/tex]

[tex]\rule{300}{1}[/tex]

✓ Now we have all the required information in order to find the volume of the sphere.

✳︎Substitute 5 in lieu of r:-

[tex]\bold{V=\dfrac{4}{3} \pi (5)^3}[/tex]

➪On simplification,

[tex]\bold{V=\dfrac{4}{2} \pi (125)}[/tex]                     ◈  Next, write the value of π (3.14…)

[tex]\bold{V=\dfrac{4}{3}\times3.14\times125}[/tex]

On further simplification,

[tex]\bold{V=\dfrac{4}{3} \times392.5}[/tex]                Final Step:- Multiply the numbers.

[tex]\bold{V=523.3\:m^3}[/tex]

The answer has been rounded to the nearest tenth (one place after the decimal point)

Therefore, we conclude that the volume of the sphere is

[tex]\bold{V=523.3\:m^3}[/tex]

Good luck with your studies.

[tex]\rule{301}{1}[/tex]