Respuesta :

Answer:

See below ~

Step-by-step explanation:

Finding the x-intercepts :

  • The x-intercept's y-value is always 0
  • 0 = 9(x + 3)(x - 1)
  • x + 3 = 0 ⇒ x = -3
  • x - 1 = 0 ⇒ x = 1
  • So, hence the x-intercepts are : (-3, 0) and (1, 0)

Finding the vertex :

  • Expand the polynomial from factorized form
  • y = 9(x + 3)(x - 1)
  • y = 9(x² + 3x - x - 3)
  • y = 9(x² + 2x - 3)
  • y = 9x² + 18x - 27
  • Vertex = (h, k)
  • h = -b/2a = -18/2(9) = -1
  • k = 9(-1 + 3)(-1 - 1)
  • k = 9(2)(-2)
  • k = 9(-4) = -36
  • Vertex = (-1, -36)

Answer:

x-intercepts:  x = 1 and x = -3

vertex:  (-1, -36)

Step-by-step explanation:

x-intercepts

x-intercepts are when y = 0

⇒  9(x + 3)(x - 1) = 0

Divide both sides by 9:

⇒  (x + 3)(x - 1) = 0

Therefore:

⇒  (x + 3) = 0 ⇒ x = -3

⇒  (x - 1) = 0 ⇒ x = 1

Therefore the x-intercepts are x = 1 and x = -3

Vertex

Vertex form:  [tex]y=a(x-h)^2+k[/tex]  where (h, k) is the vertex

Completing the square

[tex]\begin{aligned}y & =ax^2+bx+c\\& =a\left(x^2+\dfrac{b}{a}x\right)+c\\\\& =a\left(x^2+\dfrac{b}{a}x+\left(\dfrac{b}{2a}\right)^2\right)+c-a\left(\dfrac{b}{2a}\right)^2\\\\& =a\left(x-\left(-\dfrac{b}{2a}\right)\right)^2+c-\dfrac{b^2}{4a}\end{aligned}[/tex]

Therefore:

[tex]y=9(x+3)(x-1)[/tex]

[tex]\implies y=9x^2+18x-27[/tex]

Completing the square to rewrite the equation in vertex form:

[tex]\begin{aligned}y & =9x^2+18x-27\\& =9\left(x^2+\dfrac{18}{9}x\right)-27\\\\& =a\left(x^2+\dfrac{18}{9}x+\left(\dfrac{18}{2(9)}\right)^2\right)-27-9\left(\dfrac{18}{2(9)}\right)^2\\\\& =9\left(x-\left(-\dfrac{18}{2(9)}\right)\right)^2-27-\dfrac{18^2}{4(9)}\\\\& =9(x+1)^2-36\end{aligned}[/tex]

Therefore, the vertex is (-1, -36)

Ver imagen semsee45