Respuesta :

The solution set for the both equation is  (3,0) and (-1,0)

We have given that the equation

[tex]y=x^2-2x-3 \ and\ y=x+3[/tex]

We have to determine the solution to the first equation

What is the quadratic equation formula?

[tex]\quad x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-3\right)}}{2\cdot \:1}[/tex]

[tex]x_{1,\:2}=\frac{-\left(-2\right)\pm \:4}{2\cdot \:1}[/tex]

[tex]x_1=\frac{-\left(-2\right)+4}{2\cdot \:1},\:x_2=\frac{-\left(-2\right)-4}{2\cdot \:1}[/tex]

[tex]x=3,\:x=-1[/tex]

Now  use this value we have to find the value of y

When x=3 then

y=(3)^2-2(3)-3

y=9-6-3

y=0

When x=-1 then y=1-2(-1)-3

y=1+2-3

y=0

Therefore the solution set for both equations is (3,0) and (-1,0).

To learn more about the solution set visit:

https://brainly.com/question/10588366

#SPJ1