Respuesta :

Esther

Answer:

V ≈ 500 cm³

Step-by-step explanation:

Volume of a sphere: ⁴⁄₃πr³ (where r is the radius)

  • π (pi) ≈ 3
  • r (radius) = diameter/2 ⇒ 10/2 = 5 cm

Substitute the given values into the formula:

⇒ V = ⁴⁄₃πr³

⇒ V ≈ (⁴⁄₃)(3)(5)³

⇒ V ≈ (⁴⁄₃)(3)(125)

⇒ V ≈ (⁴⁄₃)(375)

V ≈ 500 cm³

Learn more here:

brainly.com/question/27579019

Given: [tex]\textsf{Diameter = 10 cm, Volume = 4/3} * \pi*r^3[/tex]

Find:  [tex]\textsf{Determine the volume}[/tex]

Solution: First we need to determine the radius by dividing the diameter by 2 and after that we can plug in the information into the equation and simplify it until we get the volume.

Determine the radius

  • [tex]\textsf{Radius = Diameter / 2}[/tex]
  • [tex]\textsf{Radius = 10 cm / 2}[/tex]
  • [tex]\textsf{Radius = 5 cm}[/tex]

Plug in the values

  • [tex]\textsf{Volume = 4/3 } * \pi*r^3[/tex]
  • [tex]\textsf{Volume = 4/3 } * 3 * (5\ cm)^3[/tex]

Simplify the expression

  • [tex]\textsf{Volume = (4 * 3)/3} * (5\ cm)^3[/tex]
  • [tex]\textsf{Volume = 4} * (5\ cm)^3[/tex]
  • [tex]\textsf{Volume = 4} * 125\ cm^3[/tex]
  • [tex]\textsf{Volume = } 500\ cm^3[/tex]

After completing the steps we were able to determine that volume of the sphere that was provided is 500 cubed centimeters.