Respuesta :

Answer:

x = 0 or x = 1

Step-by-step explanation:

f(x) = |x| - 4

g(x) = x³ - 4

f(x) = g(x)

|x| - 4 = x³ - 4

Add 4 to both sides.

|x| = x³

x = x³  or  -x = x³

x³ - x = 0   or   x³ + x = 0

x(x² - 1) =   or  x(x² + 1) = 0

x = 0 or x + 1 = 0 or x - 1 = 0

x = 0 or x = -1 or x = 1

x = -1 does not work, so we discard that solution.

Answer: x = 0 or x = 1

genan

Answer:

values of x: x = 1 and x = 0

Step-by-step explanation:

Given:

  • f(x)= |x| - 4
  • g(x) = x³ - 4

Want: x - values when f(x) = g(x)

  • f(x) = g(x) → |x| - 4 = x³ - 4
  • positive interval x ≥ 0
  • negative interval x < 0

|x| - 4 = x³ - 4, the 4 cancel out on both sides

|x| = x³

|x| - x³ = x³ - x³

|x| - x³ = 0, x ≥ 0

-x - x³ = 0, x < 0

x = 0

x = -1, x ≥ 0

x = 1

x = 0, x < 0

The intersections are x = 0 and x = 1 and no solution

Learn more about Inequalities here: https://brainly.com/question/25275758