Respuesta :

The solution to the binomial expression by using Pascal's triangle is:

[tex]\mathbf{=177147x^{11}-2598156x^{10}y +17321040x^9y^2-69284160x^8y^3+184757760x^7y^4}[/tex]

[tex]\mathbf{-344881152x^6y^5+459841536x^5y^6-437944320x^4y^7+291962880x^3y^8}[/tex]

[tex]\mathbf{-129761280x2y^9+34603008xy^{10}-4194304y^{11}}[/tex]

How can we use Pascal's triangle to expand a binomial expression?

Pascal's triangle can be used to calculate the coefficients of the expansion of (a+b)ⁿ by taking the exponent (n) and adding the value of 1 to it. The coefficients will correspond with the line (n+1) of the triangle.

We can have the Pascal tree triangle expressed as follows:

                          1

               1                   1

        1                2                 1

    1          3              3               1

1      4            6                4            1

--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

From the given information:

The expansion of (3x-4y)^11 will correspond to line 11.

Using the general formula for the Pascal triangle:

[tex]\mathbf{(a+b)^n = c_oa^nb^0 + c_1 a^{n-1}b^1+c_{n-1}a^1b^{n-1}+c_na^0b^n}[/tex]

The solution to the expansion of the binomial (3x-4y)^11 can be computed as:

[tex]\mathbf{=177147x^{11}-2598156x^{10}y +17321040x^9y^2-69284160x^8y^3+184757760x^7y^4}[/tex]

[tex]\mathbf{-344881152x^6y^5+459841536x^5y^6-437944320x^4y^7+291962880x^3y^8}[/tex]

[tex]\mathbf{-129761280x2y^9+34603008xy^{10}-4194304y^{11}}[/tex]

Learn more about Pascal's triangle here:

https://brainly.com/question/16978014

#SPJ1